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Power-law and exponential segregation in two-dimensional silos of granular mixtures
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When a binary mixture of granular materials, differing in shape or size, is poured into a quasi-two-
dimensional silo, segregation of the mixture is observed. Depending on the size ratio d,/d,; of the species, the
mixture segregates completely or partially into the pure species. To study the partial-segregation effect we
propose a theoretical model based on the work of Boutreux and de Gennes [J. Phys. I 6, 1295 (1996)] but we
introduce more realistic collision functions. To compare the partial- and complete-segregation effects, we also
discuss calculations for the complete-segregation model proposed by Makse [Phys. Rev. E 56, 7008 (1997)].
Our experiments confirm the analytical solutions for both types of segregation. We find that the transition from
complete segregation to partial segregation appears as the size ratio of the species is decreased below a critical
value, which is found to be d,/d;=1.4 for our system. Our experimental and analytical studies predict the
regime for applicability of both partial- and complete-segregation models in terms of the size ratio of the

species and the respective model parameters.
DOI: 10.1103/PhysRevE.74.051301

I. INTRODUCTION

Size segregation is one of the interesting and unusual
properties of granular mixtures [1-5] which is known to oc-
cur when a mixture of granular materials is exposed to ex-
ternal periodic perturbations such as vibrations [6-10] or ro-
tations [11-13]. Size segregation can also occur in the
absence of external perturbations. For example, when a mix-
ture of grains of different size is poured onto a heap, the
larger grains are more likely to be segregated near the bottom
of the heap while the smaller grains segregate near the pour-
ing point of the heap [ 14—18]. Different forms of segregation
are observed when the grains differ in size and surface prop-
erties (shape, roughness, etc.). It has recently been shown
that when the mixture is composed of grains differing not
only in size but also in shape, another type of segregation,
known as stratification, may be observed [19-23]. When the
mixture is composed of large grains that are more faceted,
such as cubical, and small grains that are less faceted, such
as spherical, the mixture spontaneously stratifies into alter-
nating layers of larger faceted and smaller rounded grains. A
model of the stratification process is shown in Fig. 1(a).

In contrast, when the mixture is composed of large
rounded grains and small more faceted grains, only segrega-
tion of the mixture results. The larger and smoother grains
preferentially stop near the bottom whereas the smaller
grains are more likely to be found at the top of the pile
[19,21,22]. When the grains have large differences in size,
complete segregation is observed in the steady state. In this
case, the small grains segregate near the top of the pile
whereas the large grains segregate near the bottom. Figure
1(b) shows a model of complete segregation. When the mix-
ture of grains does not differ much in size and shape, then
partial segregation is observed [21,22]. In this type of segre-
gation, the larger and smoother grains preferentially stop
near the bottom whereas the smaller grains stop at the top of
the pile. The degree of the segregation is small here since
grains of both types are present almost everywhere in the
pile.

According to previous work by Makse er al. [19], the
control parameter for the stratification-segregation transition
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is the difference between the repose angle of the pure spe-
cies,

0=t — 0y, (1)

where 6}, is the angle of repose of the small grains and 6,, is
the angle of repose of the large grains. When the difference
of the repose angles is positive—i.e., 6>0—then the strati-
fication process occurs. On the other hand, complete segre-
gation occurs when 6<<0. In addition, when the size ratio of
the species is close to 1, partial segregation of the mixture is
supposed to occur, irrespective of the difference in the repose
angle.

The segregation processes have been studied theoretically
by many groups. Bouchaud, Cates, Ravi Prakash, and Ed-
wards (BCRE) [24,25] developed a theoretical continuum
approach to describe the case of a single species in a two-
dimensional geometry. Later, de Gennes [26] applied the
BCRE formalism to study the case of granular flows in a thin
rotating drum. Boutreux and de Gennes (BdG) [27] treated
the case of granular flows made of two species of different
angles of repose by generalizing the BCRE equations and
developing a minimal model that predicts a power-law be-
havior of the concentrations in partial segregation. Later,
Makse and co-workers [28,29] used the continuum approach
of BdG [27] to study segregation and stratification processes
analytically. They derived steady-state solutions to the equa-
tions of motion for a two-species granular flow when the two
species have a different angle of repose and performed a
stability analysis predicting complete-segregation and strati-
fication processes. Their analysis was later applied to study
the segregation process in a thin rotating drum [30]. In that
case, complete segregation with a small region of mixing
was observed for a large size ratio of the species, while a
slow power-law decay of the concentrations of the grains
was predicted when the species differ slightly in size.

Most of the previous work has been analytical (with the
exception of Refs. [20,22]); thus, experimental studies are
needed to test the different predictions and further develop
the theory. In this work we present experimental and analyti-

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.74.051301

RAJESH K. GOYAL AND M. SILVINA TOMASSONE

(b)

FIG. 1. Different forms of segregation are observed when a
mixture of granular grains differing in shape or size is poured into a
two-dimensional geometry. (a) Model of stratification for a mixture
of smaller rounded grains and larger faceted grains. (b) Model of
complete segregation for a mixture of smaller faceted grains and
larger rounded grains.

cal studies of the partial- and complete-segregation processes
in a quasi-two-dimensional pile formed by pouring grains of
different size. Our paper is organized as follows. Section II
deals with the analytical part of our work where we propose
simplified models other than the minimal model for partial
and complete segregation [27] in order to understand the
concentration profiles for both cases. In this context, we first
recall the basic BCRE [24,25] and BdG [27] approaches to
understand the flow behavior of granular materials and then
we find the steady-state solution analytically for a two-
species granular flow in a quasi-two-dimensional silo for the
case of partial segregation. In Sec. III, we perform experi-
ments to study both types of segregation by varying the size
ratio of the species. There, we also analyze the experimental
data for the concentration profiles and compare them with
the analytical solutions to determine the relevant fitting pa-
rameters. The experimental profiles for both types of segre-
gation patterns are well fitted with our analytical solutions of
the granular flow equations. The partial-segregation profiles
are characterized by a power-law behavior of the concentra-
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FIG. 2. Diagram showing the variables used to describe the
granular flow of mixtures in a two-dimensional silo. We use the
label 1 for smaller grains and label 2 for larger grains.

tion while complete-segregation profiles follow exponential
functions. Our comparison of experiment and theory predicts
the regime for applicability of partial- and complete-
segregation models in terms of the size ratio of the species.
We find partial segregation of the mixtures with a size ratio
less than 1.4, while for large size ratio the segregation is
complete.

II. ANALYTICAL STUDY
A. Continuum theory for surface flow of granular mixtures

BCRE [24,25] described the dynamics of two-
dimensional sandpile surfaces for the case of a single spe-
cies. They proposed two coupled variables: the local angle of
sandpile 6(x,) to describe the static phase [alternatively the
height of the sandpile h(x,r), where 6(x,t)=—dh(x,1)/dx],
and the local thickness of the layer of the rolling grains
R(x,t) to describe the rolling phase (see Fig. 2). Both 6(x,)
and R(x,?) are considered to be a function of time ¢ and the
longitudinal coordinate x. BCRE also proposed a set of
convection-diffusion equations for the rolling grains and
found solutions for the case of a single-species granular flow.
Later BAG [27] extended the BCRE formalism to treat the
case of a two-species granular flow. In the BdG formalism,
two local equivalent thicknesses of the species in the rolling
phase R;(x,t) were considered, with i=1,2, respectively, for
the small and large grains (Fig. 2). In our calculations, we
will use the same labels for the species—i.e., i=1 for the
small grains and i=2 for the large grains. The total thickness
of the rolling phase is then defined as

R(x,t) = R (x,1) + Ry(x,1). (2)

The static phase is described by the height of the pile and the
volume fraction of the static grains ¢;(x,7) of type i at the
surface of the pile. Thus we have

¢1(x.1) + hy(x.1) = 1. (3)

The equation of motion for the rolling species is [27]
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aRi(X,t) ﬁRi(x, t)
S +
ot ox

T, @)

The first term on the right-hand side of the equation takes
into account the downhill convection of grains due to gravity,
where v, is the downhill convection speed of the rolling grain
i. The T'; term stands for the interaction between the static
and the rolling grains. Furthermore, the equation of mass
conservation yields

Oh(x,1) B

¢i(x7t) ot

T, (5)

Sum over i in Eq. (5), and we obtain an equation for h:
oh

=-I'-T,. 6
S =-Ti-D, ©)

BCRE proposed a form for I'; in the general case. Later, BdG
simplified it for the case of a continuous flow of rolling
grains. We assume the BdG formalism for the interaction
term

I'i=a (60)$R;—b(O)R; +x,(0) DR, (7

Thus, T'; is a function of the collision functions which
contribute to the rate processes. These functions a;(6), b;(6),
and x;(6) were previously defined by BdG as the following:
a;(0) is the contribution due to an amplification process (i.e.,
when a static grain of type i is converted into a rolling grain
due to a collision by a rolling grain of type i), b,(6) is the
contribution due to capture of a rolling grain (i.e., when a
rolling grain of type i is converted into a static grain), and
x;(0) is the contribution due to a cross-amplification process
(i.e., the amplification of a static grain of type j due to a
collision by a rolling grain of type i).

The collision functions fully define the dynamics of the
system. Since they are a priori unknown, they have to be
defined following certain assumptions and approximations.
BdG proposed a minimal model for the segregation where
the cross amplification x;(6) is held constant and the depen-
dence of the angle of repose 6 on the concentration ¢, is
neglected. In this work we release the approximations made
in the minimal model and propose general collision func-
tions. Our approach allows us to treat the cases of both par-
tial and complete segregation in two-dimensional silos.

B. Steady-state solutions

To calculate the steady-state solution of the equation of
motion for the granular flow of two species in a quasi-two-
dimensional geometry, a silo of lateral size L is considered
and the pouring point is assumed to be at x=0 (see Fig. 2).
Also, the convection speeds for both types of grains are set
to be equal and constant, i.e., v;=v. At steady state, the roll-
ing phase is time invariant while the static phase grows at
constant speed since we are filling the silo continuously at
the top. Thus, we have

—= (8)

and
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oh  vR°
a L ®)

where R is defined by the following boundary conditions:

Ri(x=0)=R’, (10)

Ri(x=L)=0, (11)
and

R°=RY+R). (12)

At steady state, Eq. (4) takes the form

OR;
0=—v—'+I‘l~. (13)
ox

From Egs. (6) and (9), we obtain

RO
F1+F2:—UT. (14)

Summing over i in Eq. (13) and substituting the value of
I',+T, from Eq. (14), Eq. (13) can be rearranged as follows:
R vR°
0=—p— -2 (15)
ox L
Equation (15) is solved with the boundary conditions
[Egs. (10)-(12)], and the result is a linearly decaying profile
of total rolling species with x,

0
=RZ(L—x). (16)

Defining R? =R;/R and using Egs. (5) and (9) in Eq. (13),
we obtain

*

IR .
(L=x)—"=R; - ;. (17)
ox

In what follows, we will consider two separate cases for
partial and complete segregation. First the steady-state solu-
tion for partial segregation will be developed. Later, previous
results of complete segregation will be reviewed along with
the ultimate goal of testing the predictions of both theories of
segregation.

C. Steady-state solution for partial segregation

When the difference in size or, in general, the difference
in the angle of repose of the grains is not too large (we will
quantify the word large later), the steady-state solution yields
partial or weak segregation. As mentioned earlier, a minimal
model to study partial segregation was proposed by BdG,
where the cross amplification x;(6) [Eq. (7)] was held con-
stant and the dependence of the angle of repose 6 on the
concentration of grains in the pile (¢;) was neglected. The
minimal model was solved in steady state with these ap-
proximations and produced a surprising power-law depen-
dence of the concentration of the species on the longitudinal
coordinate, ¢;(x). However, later it was shown that the de-
pendence of ¢; on the repose angles is crucial to understand
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FIG. 3. Linear approximation (solid lines) of the collision func-
tions (dashed lines) when the species do not differ much in shape
and size. The approximation is plausible in the vicinity of the angle
of repose only (Ref. [30]).

other segregation effects such as stratification and complete
segregation [19,20,30]. In a previous work, Makse [30] re-
leased the approximations made in the minimal model and
studied segregation of granular mixtures in a thin rotating
drum by linearizing the collision functions in the vicinity of
the angle of repose (see Fig. 3). To treat the case of partial
segregation in a quasi-two-dimensional silo, we use the same
definitions of the collision functions, as proposed in Ref.
[30]:

ai(6) = x,(6) = C+ A 0(x) - 0,(¢h))].
bi(0) = C = A 6(x) - 6())]. (18)

Here 7y and C are collision rates. 6;(¢)) is the generalized
angle of repose of a rolling grain of type i [i,j=1,2,(j
#1)]. 6/(¢;) depends linearly on the composition of the sur-
face ¢; [29] (see Fig. 4):

0,(p) =mypy + 6,4,

05(hy) =m by + 0y =—m ¢y + bs5. (19)

0 1 P,

FIG. 4. Dependence of the generalized angle of repose 6; for the
two rolling species on the concentration of the surface of large
grains ¢, when the difference of the repose angles is positive—i.e.,
5>0 (Ref. [29)).
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The limiting cases are 6,;=6,(¢;=1), and the slope is de-
fined as m; = 6,,— 6,,=6,,—6,,. Here, 6;; and 6,, are the
angles of repose of the pure species, while 8, and 6,; are the
cross angles of repose (6;,: cross angle of repose of a grain 1
on top of a grain 2 and vice versa for 6,;). From Fig. 4, it is
clear that the difference

= 01(‘752) - 02(¢2) (20)

is independent of the concentration ¢, and we obtain i
=0,;—0,;=0,,—0,,. The angle ¢ is determined by the shape
and size of the species and therefore determines the degree of
segregation. If species 1 are the smallest, then 6,(¢,)
> 60,(¢p,) for any composition of the surface ¢, (i.e., the
small grains are always captured first and also 6,,> 6,,). The
repose angles of the pure species, 6;; and 6,,, are interme-
diate between 6, and 6,;. For a mixture of grains with dif-
ferent shape and friction coefficients 6, # 6,,, and 6,,=6,; if
the grains are of the same size." If the species have the same
shape and friction coefficients, then 6= 6,.
Now, from Egs. (18) and (7), we obtain

F=F1+r2=27(0— 01)R1+2'y(6— 02)R2. (21)

Substituting the value of I' from Eq. (14) into Eq. (21), we
get

vR®
29(6— 91)R1+27(9—92)R2=—T- (22)
From Egs. (20) and (22), we get
vR®
T +2yYR,
-0=—— (23)
2YR
and
vR°
0 2yyR,
0—p=——— " 24
p IR (24)
Combining Egs. (5), (7), (9), (18), and (22), we obtain
(C—y(0-0))R,
w7
—+CR
2L

Substituting Eqs. (23) and (16) into Eq. (25), and trans-
forming R; into R;, we further simplify:

vy Ri(1-R))

h=Ri+ cm-
1+ —
2C(L-x)

(26)

Now, substituting Eq. (26) for the concentration into dif-
ferential Eq. (17) and simplifying the differential, Eq. (17),
we get

'For grains with different shape and same size the equality 6,
=6, is not rigorously proven in the literature but we are not using
this condition anywhere in our work.
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FIG. 5. (Color online) Steady-state solution for the two species
granular flow in a two-dimensional silo in the case of partial segre-
gation. (a) Concentration profile of small grains for different values
of the power-law exponent m. (b) Profiles of the rolling phase for
each species when m=1.0.

(L—x)&——M—Rl(l_Rl) (27)
ox

e ( v o1 ) '
1+ —
2C(L-x)
Solving the differential Eq. (27), we obtain a power-law
form for the rolling species:

. 1
Ry(x) = 5 : (28)
R L+vnC \"

1+ —| ————
RI\L-x+v/2C
Rg( L+v/2C )m
. RI\L-x+v/2C
Ry(x) = (29)

Ry L+vc \"|
1+ — ——
RI\L-x+v/2C

where the power-law exponent m=yiy/ C depends on the de-
gree of difference between the species. The final expression
for the concentration of small grains ¢, is obtained when Eq.
(28) is plugged into Eq. (26). We illustrate the steady-state
concentration profile in Fig. 5(a) for different values of the
power-law exponent m and for the case R?:Rg. The profiles
of the rolling species for m=1 are shown in Fig. 5(b). Also,
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we choose the following typical experimental values for the
parameters in the calculations [20,30]: L=30 cm, y=20/sec,
v=10 cm/sec, $=0.0-0.3,% and R2=0.25 cm.

The parameter C is set C=1.2/sec, and it is obtained by
comparing our experimental data for ¢,(x) with the theoret-
ical predictions of Eq. (26) [i.e., we plot the experimental
data obtained for ¢;(x) as a function of (1-x/L) and com-
pare these data with Eq. (26), then perform a fitting proce-
dure for the parameter C]. The procedure to obtain the free
parameter C is the following: we first start with Eq. (26) and
make an initial guess for the parameter C (considering that
the analytical solution with that particular value of C should
provide the maximum spectrum for the different degrees of
mixing). Initially we choose a value of C equal to y as our
initial guess since both C and 7y are collision rates. Using that
initial guess in Eq. (26), we then perform a fit with the ex-
perimental data and then fine-tune the value of C with the
experimental curve to find the best match. A value of C
=1.2/sec gives the best fit to the experimental results.

Figure 5(a) shows that particles 1 (small grains) have a
higher concentration at the top and thus preferentially stay at
the top of the pile while particles 2 (large grains) stay at the
bottom. The degree of segregation is very small since the
concentration varies very smoothly as a function of position.
We observe that our model produces the same power-law
behavior as the one proposed in the minimal model of BdG.
It seems rather surprising that two models, starting from very
different forms of collision functions, end up with the same
kind of behavior. The answer to this question lies in the fact
that the relevant parameter is the angular difference ¢ be-
tween the generalized angle of repose and not the general-
ized angle of repose 6,(¢;) [see Eqs. (19) and (20)]. In other
words, our steady-state solution does not depend on the slope
m; [Eq. (19)]. In fact, the constant m; does not appear any-
where in the equations for the steady-state solution. On the
other hand, BdG in their work assumed the slope m; equal to
zero. The profile of R(x) [Fig. 5(b)] behaves linearly with x,
which is the result of the conservation of the number of
grains. Also, we observe slowly decreasing profiles for the
rolling species R;(x).

We observe, however, that as we increase the power-law
exponent m(m>2), the power-law behavior does not seem
suitable to model partial segregation [Fig. 5(a), m=2.5]. As
discussed in Ref. [29] the angular difference ¢ determines
the degree of segregation. Thus complete segregation is ex-
pected for large values of . When the size ratio is close to 1
[21,22], the angle ¢ is expected to be small and we can
linearize the collision functions [Eq. (18)]. When there is a
large difference in size, we expect ¢ to be large and the
linear approximation for the collision functions breaks down.
Since the exponent m is proportional to ¢ (i.e., mo i
«d,/d,), a large size ratio means large m(m>2) and the
power-law model is no longer applicable to calculate the

’Here we purposely choose 0= ¢y=<0.3 [even though typical val-
ues for partial segregation are 0<y/<0.1 (Ref. [29])] in order to
check whether the analytical solution for partial segregation is valid
for higher values of # (i.e., for both partial and complete segrega-
tion).

051301-5



RAJESH K. GOYAL AND M. SILVINA TOMASSONE

steady-state solution. In this case, a complete-segregation ef-
fect acts in the system. In what follows, we will review the
analytical solution for complete segregation obtained in Ref.
[28], which will be used later in the experimental section,
focusing on both partial- and complete-segregation studies.

D. Steady-state solution for complete segregation

We now focus on the case for which the difference in size
or angle of repose is large, hence leading to complete or
strong segregation. In this type of segregation, two distinct
segregated regions for the two types of grains used are ob-
served [see Fig. 1(b)]. This type of segregation is due to the
collisions between the particles in the rolling and static
phase, as captured by the BCRE formalism. However, in the
case of thick flow there is an extra segregation mechanism
helping the large grains to move to the bottom. When the
grains are very different, the segregation takes place also in
the flowing layer where small particles move in between the
gaps of larger particles, leaving the latter on top of the rolling
phase. This effect is known as percolation, kinematic sieving,
or free surface segregation [20,29,30]. Thus, small rolling
grains form a sublayer underneath the sublayer of large roll-
ing grains. A thick rolling phase is a necessary condition for
the percolation effect to take place. Therefore we may infer
that there should not be any capture of larger particles in the
upper region since the smaller particles screen the larger roll-
ing grains with the surface. To simulate these effects, the
following definitions of the collision functions were used in
Ref. [28]:

a;=x;= YII[0(x) - 6],

b;=1[6(¢;) - 6x)], (30)
where
{X if X=0,
H[X]= .
0 if X<0.

To calculate the steady-state solution of the equations of
motion, calculations were done in two regions: the upper part
of the pile (region A), where 6,(¢,) <6< 6,(¢,), and the
lower part of the pile (region B), where 0< 6,(¢,) < 0,(,).
The steady-state solutions in these regions are the following.

Region A. In this region only smaller grains are present,
defined in the region O0=x<x,, where xm:R?L/ R
—v/(yy) defines the point where the pure region of smaller
grains ends:

$1(x0) =1, (31a)
$r(x)=0 (31b)
and
Rl(x)=R(1)<1 —%) _Rgf, (32a)
Ry(x)=R). (32b)

Region B. Valid at the lower part of the pile (x, <x<L),
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mainly larger grains are present after a small region of the
order of v/(y):

R(x) = R , (33)
X=X,
ll +A exp( ):|
(x —xm>
R(x)A exp
Ry(x) = . (34)

X=X, ’
1+Aexp
;

where AzRgL/R(l)r and the characteristic length of segrega-
tion is r=v/yy. Also, the concentration profile as a function
of the rolling species is given as

_R® L

d1(x) = R(x) [1 + rRORZ(x)]’ (35)
R,(x) L

by(x) = RZ(;‘) [1 - @Rlu)]. (36)

The parameter r is expected to be of the order of the size
of the grains, so for large system size r<L and A>1. The
theoretical profiles of steady-state solutions for the following
typical experimental values [20], and when R(=RY, are
shown in Fig. 6: L=30 cm, y=20/sec, v=10 cm/sec, ¢
=0.1-0.3, and R°=0.25 cm.

Figure 6(b) shows complete segregation of the small
grains at the top [¢(x=0)=1, ¢,(x=0)=0]. The concentra-
tion of the small grains then decays exponentially with a
region of mixing of the order of the characteristic length r,
formed at the center of the pile (in contrast to the power law
formed in the case of partial segregation). We also notice that
the characteristic length r or the parameter r/L decreases as
the size ratio d,/d; increases. Therefore, since y«d,/d,, in-
creasing the size ratio makes the region of mixing small and
the segregation becomes more and more complete. However,
we observe that the model does not predict the correct be-
havior of the complete-segregation process when the param-
eter r/L is large [Fig. 6(b), r/L=0.20,0.50]. Figure 6(a)
shows the same linearly decaying profile for R(x) but expo-
nential behavior is observed for the rolling species R;(x),
compared to a slowly decaying profile in the case of partial
segregation.

From our analytical study, we conclude that both the
power-law and exponential models can predict the correct
behavior of the segregation processes only within a limited
regime. In the following section we will show the results
from our experiments and predict the regime for applicability
of both models in terms of the size ratio of the species and
the respective model parameters.

III. EXPERIMENTAL STUDY

Now, we perform an experimental test of the prediction of
the above theory by measuring the concentration profiles of
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FIG. 6. (Color online) Steady-state solution for a granular flow
of two species in the case of complete segregation. (a) Profiles of
the rolling species when the parameter r/L=0.1. (b) Concentration
profile of small grains for different values of the parameter /L.

granular mixtures as a function of the size ratio between
particles. Our experimental setup consists of a vertical quasi-
two-dimensional silo with a very narrow gap separating two
transparent glass plates. The length of the silo is L=22 cm in
the lateral direction and the gap is [=0.5 cm. We close the
three edges (left, right, and bottom) of the silo, and the
granular mixture is poured from the right corner of the top.

In this study, we focus on both partial and complete types
of segregation. To perform experiments with different size
ratios of grains, d,/d;, various mixtures of grains composed
of two species differing in size only are considered (we
choose grains with no difference in shape so that the process
of stratification can be avoided). We use acrylic beads of size
500-600 wm in diameter, spherical shape, as the first type of
grains and acrylic or glass beads (spherical shape, different
diameters for different experiments) as the second type of
grains. We are not labeling the species here, since the labels
1,2 will be determined by the size ratio of the species. Since
both the acrylic and glass beads are transparent in nature, to
bring contrast in the image we color the 500-600 um
acrylic beads black using a dye. To perform experiments for
different size ratios d,/d,, acrylic or glass beads of different
sizes (90-130, 180-125, 850-1000, 360-425, 675-775, and
400-450 um, respectively) are chosen. The information re-
garding the angles of repose of the pure species (6;,) is given
in Fig. 7, where 6;; is obtained by pouring the grains into a

PHYSICAL REVIEW E 74, 051301 (2006)

32 T T T T
-~
g? 304 E
2
X T 1 I -
S 284 E
=
V
@
S
& 26 .
=

24 . T - T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

Grain Size (mm)

FIG. 7. (Color online) Angle of repose of acrylic beads of dif-
ferent size. All beads are quite spherical in shape.

silo and simply measuring the slope of the pile. We observe
that the angle of repose of the pure species does not depend
on the size of the particle if the species are of the same shape
(in agreement with previous studies [20]). The experiments
to measure the cross angle of repose involve the measure-
ment of the kink as explained in Ref. [20]. In the present
work, however, we deal only with segregation and not strati-
fication, so we cannot measure the cross angle of repose as
defined in the aforementioned work. Since the parameter
directly depends on the cross angles of repose (=6;;—6,,
=6,,— 65,), the experimental measurement of ¢ from the val-
ues of cross angles is impossible. However, as demonstrated
in published work [28,29], we consider ¢ from 0.0 to 0.1 for
partial segregation and from 0.1 to 0.3 for complete segrega-
tion. -

In all the experiments, an equal volume of two types of
beads is poured at the top of the silo and we keep the flow
rate constant. To capture the images, we use a Canon G6
digital camera. The digital images are then transferred to a
workstation for image processing. The image analysis is
done by analyzing the top few layers of the pile and by
converting the color image into a gray-scale one. The varia-
tion in the gray-scale image is then calibrated to give the
concentration of grains along the lateral direction. Figures
8(a) and 8(b) reflect two pictures of the experiments
performed with two mixtures of different size ratios
d,/d;=1.29 and d,/d;=2.72, respectively. Figure 8(a)
shows partial segregation of a mixture of white glass
beads (d;=400-450 um) and black acrylic beads

3The authors in Ref. [29] do not explicitly mention 0< #<0.1 in
the case of partial segregation; however, it can be easily proven.
The authors suggested that ¢ocd,/d,; (i.e., proportional to the size
ratio of the grains) and that ¢ determines the degree of segregation
(small values of ¢ favor partial segregation and larger values of i
favor complete segregation). They considered ¢ of the order of
0.1-0.3 and d,/d;=1.4 for complete segregation in their work.
When d,/d; <1.4, a partial segregation of mixture is observed ex-
perimentally which clearly suggests that ¢ must be of the order of
0-0.1 for partial segregation (since perfect mixing means ¢ equals
Z€r10).
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(b)

FIG. 8. (Color online) Experimental pictures of size segregation
for different size ratio d»/d; of black acrylic beads and white glass
beads. (a) Example of partial segregation for a mixture of white
glass beads (d;=400-450 um) and black acrylic beads (d,
=500-600 um): average size ratio d,/d;=1.29. (b) Example of
complete segregation for a mixture of white glass beads (d;
=180-225 pum) and black acrylic beads (d,=500—600 wum): size
ratio d,/d;=2.72.

(d,=500-600 wm) with an average size ratio d,/d;=1.29. It
is clear that the concentration of black beads (larger grains)
is low at the top and it increases continuously as we go
toward the bottom of the heap, whereas the concentration of
the white beads (smaller grains) decreases as we reach the
bottom. On the other hand, when a mixture of the same kind
of beads but with a different size ratio d,/d;=2.72 (d,
=180-225 um and d,=500-600 wm) is poured into the
silo, complete segregation of the mixture is observed. In this
case the smaller white beads stay at the top, while the larger
black beads stay at the bottom and the region of mixing is
very small compared to partial segregation.

To compare our analytical and experimental results, we
analyze the images and calculate the concentration profiles
for the smaller grains along the lateral direction (Figs. 9 and
10). In both partial- and complete-segregation cases, we
compare the two solutions for the following experimental
values for the following parameters: L=22 cm, y=20/sec,
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FIG. 9. (Color online) Comparison of the experimental concen-
tration profile (of small grains) with steady-state analytical solutions
for the power-law model. We pour a mixture of black acrylic beads
and white glass beads with average size ratio d,/d;=1.29 into a
two-dimensional silo. Good agreement is found between the experi-
mental and analytical results, and we obtain a value equal to 1.25
for the power-law exponent .

v=10 cm/sec, R°=0.25 cm, RY/R=0.5, and C=1.2/sec.

We have used the same experimental conditions as in pre-
vious studies by Ref. [20] and could reproduce the param-
eters for the velocity of the rolling grains v and . We used a
high-speed video camera to track the motion of individual
grains v. In our work we followed the same procedure and
we could measure the same average value of the velocities of
rolling grains. The other parameter y=20/sec has been cho-
sen by fitting the experiments and the analytical solution
[20]. As mentioned earlier in the section on the analytical
solution for partial segregation, the parameter C has been
obtained by means of a fitting procedure.

Good agreement is found between the analytical and ex-
perimental results for both types of segregation, as seen in
Figs. 9 and 10. For the case of partial segregation, both ex-
perimental data and analytical calculations produce a smooth
power-law behavior. A value equal to 1.25 for the power-law

0.8
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= — Analytical
04| -
0.2 =
0 | ] o d
0 0.2 0.4 0.6 0.8

x/L

FIG. 10. (Color online) Comparison of the experimental concen-
tration profile (of small grains) with steady-state analytical solutions
for complete segregation. We pour a mixture of black acrylic beads
and white glass beads with average size ratio d,/d;=2.72 into a
two-dimensional silo. Good agreement is found between the experi-
mental and analytical results, and the parameter »/L attains a value
equal to 0.125.
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FIG. 11. (Color online) Comparison of the experimental concentration profile (of small grains) with the analytical solutions for complete
segregation for different values of the size ratio d,/d; of grains. The fitting parameter r/L is shown inside each plot. In all plots (a)—(d), the
discrete points denote the experimental data and solid line denotes the analytical solution. We do not obtain a good agreement between
experiments and the analytical model, when the size ratio d,/d,; is smaller than 1.4. In this case, the power-law model fits better (see Fig. 9).

component m is predicted by fitting the experimental data to
the analytical solutions within the power-law approach (Fig.
9). In the case of complete segregation the experiment profile
for the concentration of small grains decays exponentially
with the position and a fit between the experimental data and
the analytical solutions for complete segregation produces a
value equal to 0.125 for the parameter r/L (Fig. 10).

To better understand the transition between the power-law
and exponential segregation we perform experiments for dif-
ferent values of the size ratio d,/d;. In turn, we investigate
the effect of the size ratio d,/d; on the parameter r/L by
conducting experiments with different mixtures of glass and
acrylic beads. We perform similar comparisons of the experi-
mental data with the analytical solutions for complete segre-
gation profiles to obtain the fitting parameter r/L (Fig. 11).
The plot of the parameter /L with size ratio d,/d, is shown
in Fig. 12.

We observe that for large values of the size ratio d,/d,;
(d,/d,=1.4), the experimental data show good agreement
with the analytical results for complete segregation [Figs.
11(a)-11(d)] and the fitting parameter r/L decreases slowly
with size ratio d,/d; (Fig. 12). For small values of the size
ratio, d,/d; < 1.4 (here d,/d;=1.32,1.29), we do not obtain a
good fit between the experiments and the theoretical model
for complete segregation. In fact, a better fit is observed with
the power-law approach (as seen earlier in Fig. 9 for d,/d,
=1.29). These results clearly suggest that a complete-
segregation model is applicable for large values of the size

ratio dy/d,=1.4 (and the model parameter r/L=<0.16, for
our system). Below this critical value of the size ratio, the
power-law model mimics the correct behavior of the segre-
gation phenomenon.

We have calculated the parameter ¢ from the determina-
tion of the exponent m and r. From the definition of the

0.5 T T T T
04} — Power-law segregation 1

0.3

r/L

0.2 Exponential segregation

0.1

FIG. 12. (Color online) The fitting parameter r/L vs size ratio
d,/d; of the grains. We conduct experiments with different size
ratio d»/d; and obtain the parameter /L by fitting the experimental
data with the analytical solution for the exponential segregation. We
find two regions based on the size ratio of the grains: power-law
segregation region, if d,/d;=1.4, and exponential segregation re-
gion, if dr/d;=1.4.
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TABLE I. Calculation of ¢ from the determination of the pa-
rameters m and r. The parameters m and r (or, equivalently, /L) are
obtained by fitting experimental data to the analytic solutions for
partial and complete segregation, respectively.

d,/d, Segregation type m r(cm)=(r/L) X L Y

1.29 Partial 1.25 0.052
1.32 Partial 1.40 0.058
1.40 Complete 3.52 0.142
1.68 Complete 3.09 0.162
2.72 Complete 2.75 0.182
5.00 Complete 2.20 0.227

power-law exponent m, the parameter (y=mC/y when segre-
gation is partial and ¢y=v/(yr) when the segregation is com-
plete. Table I displays the calculated values of ¢ for the
different values of m and r for different size ratios (d,/d;) of
the grains considered.

From Table I, we observe that the calculated values of ¢
agree well with previous studies [28,29], where the authors
suggest that the values for ¢ are within the range (0<y
=<0(.1 for partial segregation and 0.1 <=<0.3 for complete
segregation).

IV. CONCLUSIONS

We find the analytical solutions for a model of surface
flow of granular mixtures of two species, poured into a
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quasi-two-dimensional silo. Our model for partial segrega-
tion is based on the minimal model proposed by BdG, but we
forego their approximations and consider more realistic col-
lision functions to calculate the steady-state solution. The
new collision functions capture the dependence of the angle
of repose 6 on the grain concentration ¢. The proposed
model predicts the same power-law dependence as found by
BdG. Our results suggest that the relevant parameter in the
calculations is the difference between the angle of repose (1)
and not the angle of repose 6(¢) itself. The case of exponen-
tial segregation is also discussed in the framework to com-
pare the results of partial and complete segregation. Our ex-
periments confirm the analytical profiles for both types of
segregation and suggest the onset of a transition from com-
plete to partial segregation at a critical size ratio d,/d,
=1.4 of the species, which has not been observed before.
Below this critical value, partial segregation of the mixture is
observed. We also predict the regime for applicability of both
partial- and complete-segregation models in term of the size
ratio of the species and the respective model parameters.
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